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The selection of long air bubbles propagating steadily in a strongly collapsed fluid-
filled elastic tube is investigated experimentally in a benchtop model of airway
reopening. Localized regions of strong collapse are likely in the lung, because
collapsing fluid-elastic instabilities promote extensive deformation of the airway cross-
section beyond the point of opposite wall contact. We find that radical changes in
the reopening mechanics occur at this point. We build on the recent identification
by Heap & Juel (Phys. Fluids, vol. 20, 2008, article no. 081702) of three different
steadily propagating bubbles (asymmetric, double-tipped and pointed) that are
selected successively for increasing values of the capillary number (Ca , ratio of viscous
to surface tension forces) in tubes initially collapsed beyond the point of opposite
wall contact. The asymmetric bubble is also observed in less collapsed tubes for small
values of Ca , and we show that it bifurcates super-critically from the usual parabolic-
tipped bubble as Ca increases. We also characterize the mechanisms underlying
the discontinuous transitions between asymmetric and double-tipped bubbles, and
double-tipped and pointed bubbles. In particular, we find that the tube must reopen
to a critical height for double-tipped bubbles to be selected. The length of the
precursor fingers in the double-tipped bubble decreases with Ca , and the bubble loses
stability to pointed bubbles when this length is less than the height of the tube at the
point where the fingers merge. By contrast with the asymmetric and double-tipped
bubbles, the pointed bubble infiltrates the most collapsed part of the tube to yield
the rapid reopening of the airway at low pressure, with the potential to reduce
ventilation-induced lung damage.

1. Introduction
The initial opening of airways with a newborn’s first breath occurs through the

propagation of a long air bubble. The rapid removal of the majority of fluid in the
lungs prior to birth suggests that the airways are in a strongly collapsed initial state
(Bland 1991). Many pulmonary conditions also promote the collapse and occlusion
of parts of the lung with viscous fluid, so that mechanical ventilation is required
to restore gas-exchange (Grotberg 2001; Grotberg & Jensen 2004). Although the
collapse of airways in diseased lungs has not been documented quantitatively,
dynamic models of airway collapse find that airway closure occurs on time scales
similar to the breathing cycle through fluid-mechanical ‘film collapse’ or fluid-elastic
‘compliant’ collapse, as recently reviewed by Heil, Hazel & Smith (2008). The resulting
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collapse is often extensive, so that the opposite walls of the cross-section of the
airway make contact. Moreover, a numerical study of the stability of minimal liquid
bridges in elastic tubes by Heil (1999) indicates that for lung parameters, the tube
adopts a very strongly deformed configuration with opposite wall contact.

Airway reopening can be modelled by the propagation of a long bubble in a
liquid-filled collapsed elastic tube, which is an example of a two-phase displacement
flow that interacts with the elastic airway. It is governed by the competition between
viscous, surface tension and elastic forces. The capillary number, Ca = μU/σ ∗, where
U is the bubble speed, and μ and σ ∗ the dynamic viscosity and surface tension of the
lining liquid, respectively, corresponds to the ratio of viscous to surface tension forces.
The non-dimensional surface tension, σ = σ ∗/(RK), is the ratio of surface tension to
elastic forces, based on the bending stiffness K . For a given tube (i.e. a given value
of K), the initial transmural pressure can be varied by changing the level of initial
collapse, which is measured by the initial dimensionless cross-sectional area, A/A0,
where A is the cross-sectional area of the collapsed tube, A0 = πR2 and R is the
inner radius of the undeformed tube. This quantity is associated with the transmural
pressure (pressure inside the tube relative to atmospheric pressure) via a constitutive
relation known as the ‘tube law’ (Kamm 1999; Grotberg & Jensen 2004).

Previous experiments on airway reopening have only reported bubbles with the
rounded tip characteristic of the displacement of a more viscous fluid (Taylor 1961).
In benchtop experiments performed by Gaver, Samsel & Solway (1990), the parabolic-
tipped bubble was observed in strongly collapsed tubes that had negligible bending
stiffness, so that the fluid–structure interaction arose from the large tension imposed
on the end of the tube. A wavy bubble front was noted at the onset of experiments
in a two-dimensional geometry by Perun & Gaver (1995), but the non-uniformities
decayed as the bubble front propagated. These bubbles are accurately captured by two-
dimensional models, which find that they propagate by peeling apart the tube walls
(Gaver et al. 1996). Peeling bubbles with rounded tips were also obtained from three-
dimensional simulations of moderately collapsed airways, which couple nonlinear shell
theory to the Stokes flow equations in the absence of gravity (Hazel & Heil 2003).
Their dimensionless pressure on the capillary scale (relative to atmospheric pressure),
P = P ∗R/σ ∗, where P ∗ is the dimensional bubble pressure, increases approximately
linearly with Ca . However, the study focused exclusively on intermediate values of the
non-dimensional cross-sectional area, 0.39 � A/A0 � 0.62, that correspond to initial
transmural pressures approximately equal to −K .

In this paper, we investigate airway reopening in the limit of strong initial collapse,
which is likely to be present in the lungs. We focus principally on levels of collapse
such that the cross-section of an empty model airway features opposite wall contact,
i.e. A/A0 � (A/A0)owc , where (A/A0)owc � 0.18 is the dimensionless cross-section at
which its opposite walls first make point contact. Our benchtop model consists of
a uniformly collapsed, fluid-filled silicone tube supported by a horizontal rigid plate
(Juel & Heap 2007). In the fluid-filled airway, a thin lubrication film remains between
opposing boundaries when A/A0 � (A/A0)owc . The injection of a constant flow of air
at its inlet leads to the steady propagation of a long bubble that reopens the tube. In
our experiments, the ratio of surface tension to elastic forces is σ = (3.4 ± 0.3) × 10−2,
where the bending stiffness of the tube is determined by rescaling the pressure required
to collapse the tube to opposite wall contact, measured in the laboratory, with its value
predicted by thin shell-theory (Flaherty, Keller & Rubinow 1972). The value of σ is
small because the tube was selected to be sufficiently stiff, so that it would not deform
under its own weight when empty. In the most compliant peripheral airways of the
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Figure 1. Schematic phase diagram in terms of Ca and A/A0 summarizing the results
presented in Heap & Juel (2008). Note that increasing values of A/A0 correspond to decreasing
initial levels of collapse. The value of A/A0 for which opposite wall contact first occurs,
(A/A0)owc =0.18, is highlighted with a horizontal dashed line. The pentagrams (crosses)
correspond to experiments where bubbles formed as double-tipped (pointed) and switched
to asymmetric (double-tipped) (see § 3.1.2).

lung, the value of σ is larger by approximately two orders of magnitude. Thus, our
experiments do not attempt to mimic lung conditions, but rather aim to demonstrate
that the process of reopening a fluid-filled collapsed elastic tube is associated with
a considerably wider range of complex dynamics than previously reported. For
moderately collapsed tubes, the variation of the non-dimensional surface tension
within the range 5 × 10−2 <σ < 10, only shifts the P–Ca curves without altering
them qualitatively, as highlighted by the three-dimensional numerical simulations of
Hazel & Heil (2003, 2006), and numerical results presented in Juel & Heap (2007)
for experimental parameter values. This gives an indication of the robustness of the
peeling solution, and suggests that some of our findings in the limit of high collapse
may be relevant to higher values of σ .

The combined effects of gravity and of the supporting rigid plate induce an
asymmetry in the reopening tube about its horizontal mid-plane. At moderate levels
of collapse (A/A0 = 0.38), Juel & Heap (2007) found P–Ca curves that were shifted
upwards compared with zero-gravity three-dimensional simulations, and this overall
rise in bubble pressure was consistent with two-dimensional results on asymmetric
reopening (Jensen et al. 2002) and two-dimensional simulations of the effect of gravity
(Hazel & Heil 2008). The influence of gravitational forces on the reopening dynamics
decreases with increasing level of collapse, as the thickness of the liquid lining in
the tube is reduced. The Bond number, Bo = ρgδ2/(4σ ∗), which measures the ratio
of gravity to surface tension forces based on the film thickness δ takes uniformly
small values in the range 0.03 � Bo � 0.07 for 0.02 � A/A0 � (A/A0)owc compared
with Bo =0.5 for A/A0 = 0.41. Furthermore, the effect of inertial forces is negligible
over the range of parameters investigated here (Hazel & Heil 2006; Juel & Heap 2007).

We build on the recent findings of Heap & Juel (2008), who uncovered three
novel types of bubbles that propagate steadily in the limit of strong initial tube
collapse. Their results are summarized schematically in figure 1. Beyond opposite wall
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contact (A/A0 � (A/A0)owc =0.18), the canonical parabolic-tipped bubble is replaced
by ‘asymmetric’, ‘double-tipped’ and ‘pointed’ bubbles. These multiple bubble shapes
are associated with a discontinuous relationship between bubble pressure and speed,
in contrast with the continuous P–Ca relationships that characterize the reopening
of less collapsed tubes (A/A0 > (A/A0)owc). The asymmetric bubbles, whose tip is
asymmetric with respect to the vertical mid-plane, and thus displaced from the
centre of the tube into one of the side lobes, are also selected for a small range of
A/A0 > (A/A0)owc , and sufficiently large values of Ca .

The pointed bubble is particularly puzzling as it exhibits a cusp-shaped protrusion
reminiscent of free-surface entrainment flows (Lorenceau, Restagno & Quéré 2003),
and of the free-surface cusps (Courrech du Pont & Eggers 2006) and tips (Cohen
& Nagel 2002) that can be formed when withdrawing fluid through a small orifice.
Bubbles with a pointed tip also arise in displacement flows of two miscible liquids
in rigid tubes (Petitjeans & Maxworthy 1996; Kuang, Petitjeans & Maxworthy 2004)
for small bubble speeds. The recirculation flows ahead of the bubble responsible for
focusing the interfacial flow also occur in immiscible two-phase displacements at low
Ca (Hazel & Heil 2002). However, in Hazel & Heil’s simulations (Hazel & Heil 2002),
the recirculations did not draw out a pointed tip due to moderating surface tension
forces.

Minimal liquid bridges in strongly non-axisymmetrically buckled tubes form double-
tipped bubbles, as shown numerically by Heil (1999). His static calculations (Ca = 0)
were performed by imposing a reflection symmetry about the vertical mid-plane
parallel to the tube, so that asymmetric bubbles could not be investigated. The tip
symmetry of long bubbles propagating in rigid geometries can be broken by stretching
thin wires centrally along the axis of the channel, parallel to the flow direction. By
perturbing the free rise of a bubble in a cylindrical tube in this way, Fearn (1988)
observed the supercritical breaking of the axisymmetry of the bubble tip as the
diameter of the centred wire was increased, with an associated increase in the gravity-
driven bubble velocity. In the Hele-Shaw geometry, two symmetrically located wires
were required for a sudden jump to an asymmetric state about the vertical mid-plane
to occur with increasing Ca . In both configurations, the wire pierced the bubble tip,
thus opening a negative angle at the contact point that varied with wire thickness
in the first case, and local finger slope via changes in Ca in the second case (Hong
1988). In our airway reopening model, the free surface of the bubble is not perturbed,
but the bubble propagation is constrained by the extensive initial deformation of the
tube, which is effectively split into two separate channels beyond the point of opposite
wall contact.

The aim of this paper is to identify bubble selection criteria in the limit of strong
initial tube collapse, and the reopening mechanisms associated with the different
bubble shapes. The experimental apparatus is described in § 2.1 with a particular
emphasis on bubble visualization and reproducibility, and the collapse of the elastic
tube is documented in § 2.2. The variation of P–Ca curves with initial level of tube
collapse, discussed in § 3.1, indicates that the point of opposite wall contact sets the
threshold between qualitatively different reopening processes. We identify two main
reopening regimes in the limit of A/A0 � (A/A0)owc in § 3.2: a peeling mechanism
where the bubble pressure is set by viscous stresses in the lobes (asymmetric and
double-tipped bubbles), and a fingering mechanism where the work required to open
the central region of near-opposite wall contact determines the pressure (pointed
bubble). For A/A0 � 0.04, bubbles with long precursor fingers propagate in the lobes
without reopening the tube as discussed in § 3.2.2. The transition between bubbles
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Figure 2. Schematic diagram of the experimental apparatus.

are addressed in § 4. For tubes initially collapsed beyond the point of opposite wall
contact, all the transitions between bubbles are discontinuous. Simple criteria for
the selection of double-tipped bubbles are uncovered from the detailed study of
transitions between states. Conclusions are presented in § 5.

2. Experimental methods
2.1. Description of the apparatus and experimental procedure

The main features of the experimental apparatus shown schematically in figure 2 are
similar to those described in detail in Juel & Heap (2007). Therefore, only essential
details are recalled here, but advances in bubble visualization are highlighted in § 2.1.1,
and the improved reproducibility following the change of working fluid to paraffin
oil is discussed in § 2.1.2.

A 1.0 m long piece of translucent extruded silicone tubing (Primasil Silicones Ltd,
Weobley, UK) filled with liquid was positioned on an accurately levelled solid base
plate, whose vertical position was held fixed. The base plate was mounted rigidly
beneath a facing parallel plate on a vertical translation stage, whose purpose was to
collapse the tube mechanically prior to each experiment. The tubing had an inner
radius R = 4.99±0.16mm and a wall thickness h = 0.57±0.08mm. A manual two-way
valve was connected to the downstream end of the tubing. At the upstream end, a
three-way pneumatic solenoid valve was used to switch the gas flow from exiting into
the atmosphere to entering the tube at the start of each experiment. The flow source
was a compressed nitrogen cylinder, whose flow rate was controlled manually by a
fine needle valve, and monitored accurately using a mass airflow metre (AWM5000,
Honeywell) to range between 50 and 1400 cm3 min−1. The flow rate set prior to
each experiment could be replicated to within 3%. At 1400 cm3 min−1, the Reynolds
number of the air jet flowing out of the solenoid valve nozzle into the tube was
approximately equal to 340. Beyond this value the recorded pressure traces showed
increasing levels of fluctuations, believed to be due to instabilities in the injected air.
Pressure was sampled on personal computer at a rate of 25 Hz from a differential
pressure sensor (Honeywell, ±5 cm H2O), whose first port was attached to the line
immediately upstream of the solenoid valve, while its second port was left open to
the atmosphere. The small pressure drop that occurred along the rigid line between
the sensor and the inlet of the elastic tube to be reopened was measured directly
before mounting the elastic tube. It increased with flow rate and was systematically
subtracted in order to yield measurements of the pressure inside the elastic tube.

After carefully filling the tube with liquid following the procedure described in
Juel & Heap (2007), the upper plate of the translation stage was lowered onto the
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Figure 3. Schematic diagram of the visualization set-up. A laser sheet, oriented at 50◦ from
the vertical, is shone onto the deformed tube. The tube is illuminated at different horizontal
positions depending on its local height. Thus, the laser sheet outlines local deformations
relative to the horizontal base plate, which are captured by the aerial camera. A side-view
camera monitors the reopening process and the shape of the advancing bubble via the mirror
positioned above the tube at an angle of 45◦ from the horizontal.

tube in order to collapse it. When the tube was slightly compressed, the downstream
valve was opened to evacuate the excess liquid. The position of the upper plate was
adjustable to within 0.02 mm, which was less than 2 % of the height of the collapsed
tube. Once the desired level of collapse had been reached, the two-way valve was
closed to prevent air re-entering the tube. The upper plate was subsequently raised
to an adequate height to enable the filming of the reopening process. The tube
rapidly relaxed into its equilibrium dumbbell shape, which consisted of two end lobes
separated by a thinner central region (see figure 5). After the tube had been filled and
collapsed, the solenoid valve was triggered to direct the constant flow of nitrogen into
the collapsed fluid-filled tube, and initiate the sampling of both pressure and video
footage (see § 2.1.1). This led to the steady propagation of an air bubble, as indicated
by the constant bubble pressure recorded during each experiment (see § 2.1.2 and
the detailed discussion in Juel & Heap 2007). The steady bubble established rapidly
following the decay of short initial transients (within 10 % of the tube length). When
the tip of the propagating air bubble reached a position of approximately 5 cm from
the end of the tube the pressure rose rapidly, as the injected flow continued to inflate
the reopened tube and saturated the pressure sensor. At this point the experiment
was discontinued by opening the downstream valve to avoid permanent deformation
of the silicone tube.

2.1.1. Imaging

A schematic diagram of the imaging system that enabled the capture of three
complementary views of the reopening tube is shown in figure 3. The deformation of
the top half of the tube was outlined with a laser sheet shining at an angle of 50◦

from the vertical. The local height of the tube was given by D = d/ tan 50 , where d
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is the displacement of the laser line from its position on the flat base plate, as shown
schematically in figure 3. The laser sheet was generated by a laser diode (1.5 mW)
fitted with a cylindrical lens. The aerial-view camera captured both the deformed laser
line within a 2.5 × 2.0 cm visualization window at a distance of 25 cm downstream of
the inlet, and the outline of the bubble tip as it passed.

A second camera, located 65 cm downstream of the inlet, captured an 8.5 cm
long side view of the reopening tube. Movies of the advancing reopening front were
analysed to yield a measurement of the average velocity of the propagating air bubble.
For each snapshot, the upper boundary of the tube was located by edge detection,
and the point where the height of the tube departed from its initial collapsed state was
determined to within two pixels, resulting in a relative error on the bubble velocity
of less than 2%. Moreover, constant pressure measurements of steadily propagating
bubbles were averaged over the length of this downstream visualization window. The
side-view camera also captured top-view images of the advancing bubble, which were
reflected by a float glass mirror positioned directly above the tube at an angle of 45◦.
The visualization section was illuminated from below with a strip of white LEDs,
whose brightness could be adjusted. They were chosen for their small heat generation,
so that they did not affect the temperature of the fluid on experimental time scales.

These two visualization positions were selected empirically to ensure that transients
had decayed at the upstream location, and that the bubble was not affected by the end
of the tube at the downstream location, over the entire parameter range investigated.
For most of the measurements reported in this paper, the aerial view of the bubble
tip did not evolve between these two measurement points and thus, the bubble shape
was steady.

The images from the side- and aerial-view cameras were combined using an image
inserter (Kramer, PIP-200), and sampled simultaneously onto a personal computer
at a rate of 25 frames s−1. A typical snapshot of a reopening experiment is shown in
figure 4. The image in the bottom left-hand corner is from the aerial-view camera,
and depicts a reopened tube captured after the passage of the bubble. The long
side-view and top-view images of the tube, displayed in the remainder of the image,
show a bubble that propagates from right to left. The side-view picture reveals the
profile of the tube in the transition region between collapsed and reopened states, but
the bubble itself is almost undetectable. However, the outline of the bubble is visible
in the mirror-reflected top view. Edge detection was performed reliably on many of
these top-view bubble images, despite the limited image contrast and sharpness due to
unavoidable light scattering by the translucent (semi-opaque) tube. Indeed, although
lighting from below resulted in the strongest contrast, it also led to undesirable
reflections from the mirror and the tube, which could mask the bubble locally.

2.1.2. Choice of fluid

Paraffin oil (Bells, Sons & Co, Widnes, UK) was chosen as the working fluid instead
of silicone oil used by Juel & Heap (2007). Silicone oil, which has the advantage of
commercial availability in a wide range of viscosities, was found to permeate into the
wall of the tubing on short time scales of approximately 3 h. Thus, only six consecutive
experiments could be performed on the same section of tube, in order to ensure
minimal changes to its elastic properties and the reproducibility of the results. With
paraffin oil, the elastic properties of the tube were altered less rapidly, thus enabling
the less frequent replacement of the silicone tube (every 3 days), with up to 240
experiments performed on the same section of tube. By avoiding the replacement of
the tube during carefully planned parameter studies, the maximum standard deviations
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Figure 4. Typical snapshot of the reopening process. In the bottom left-hand corner is the
aerial-view image with the laser light sheet illuminating the top half of the tube (located 25 cm
downstream of the inlet). The bubble tip, travelling right to left, has already passed so the
tube is open, as indicated by the concave laser line. The two other images are captured by the
side-view camera located 65 cm downstream of the inlet. Immediately above the aerial image
is the side view of the tube with the air bubble propagating from right to left. Above this is
the mirror image of the upper surface of the tube showing the same tube section as the side
view. This image gives a top view of the propagating bubble.

of bubble pressure and Ca (calculated from five repetitions of the experiment) were
reduced by factors of four and two, respectively, to �P =3 and �Ca = 0.05. These
values were calculated over the length of the downstream visualization window
described in § 2.1.1. The main source of experimental uncertainty was attributed to
the manipulations involved in the replacement of the tube, rather than long-range
spatial variations in the properties of the tube. Also, although paraffin oil did not wet
the tube perfectly (a contact angle of 55 ± 3◦ was measured in the laboratory), film
de-wetting effects were not observed during the propagation of the bubble. Moreover,
the different types of bubbles presented in this paper were also found in experiments
with silicone oil, which fully wets the tube. The dynamic viscosity μ, density ρ and
surface tension σ ∗ were measured at the laboratory temperature of 18 ± 1◦C to be:
μ =2.04 × 10−1 kg m−1 s−1, ρ = 8.64 × 103 kg m−3 and σ ∗ = 2.9 × 10−2 Nm−1.

2.2. Collapse of the elastic tube

The relationship between the transmural pressure and the cross-sectional area of the
tube is shown in figure 5. This ‘tube law’ was obtained by injecting air at a flow
rate of 50 cm3 min−1 into a fully collapsed empty tube. The tube reopened slowly and
uniformly along its entire length, so that its dimensionless cross-sectional area, A/A0,
was proportional to the time elapsed, as described by Juel & Heap (2007). The range
of A/A0 investigated in this paper is delimited with vertical dashed lines. Examples
of cross-sections that combine experimental pictures of the upper half of the tube
outlined with a laser line and a schematic representation of the entire cross-section
(neglecting gravity) are shown as insets in figure 5. As the tube is compressed, the value
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Figure 5. Experimentally measured ‘tube law’: variation of the transmural pressure P ∗
t with

the cross-sectional area of an empty tube. The pressure at the point of opposite wall
contact is P ∗

owc = −907 Pa, which yields a bending stiffness of K = 173 ± 4 N m−2 following
the method detailed in Juel & Heap (2007). The range of initial levels of tube collapse studied
(0.02 � A/A0 � 0.41) is delimited by vertical dashed lines. Note that the pressure sensor could
not capture the large negative transmural pressures of the highest levels of collapse, i.e.
A/A0 < 0.06; its pressure range was chosen to maximize the resolution of the bubble pressures.

of the transmural pressure becomes increasingly large and negative. After the tube has
buckled and adopted an elliptical cross-section, further small reductions of the inner
pressure yield large reductions in A/A0 until the opposite walls of the cross-section
first make contact at A/A0 = (A/A0)owc . For A/A0 < (A/A0)owc , which is the range of
initial tube collapses of interest in this paper, the tube is almost totally collapsed, and
large reductions in inner pressure yield only small reductions in A/A0. The bending
stiffness K was determined by rescaling the pressure of opposite wall contact with the
thin-shell theory predictions of Flaherty et al. (1972) to be K = 173±4 N m−2, so that
the ratio of surface tension to elastic forces was σ = σ ∗/(KR) = (3.4 ± 0.3) × 10−2.

2.2.1. Measurement of A/A0

For the reopening experiments, the fluid-filled tube was collapsed by compressing
it between parallel plates as described in § 2.1. The cross-section adopted a strained
configuration that was approximated by a rectangle with spherical caps, as illustrated
in Juel & Heap (2007). As the cross-section retained a constant perimeter, its inner
surface area could be calculated based on the separation between the compressing
plates, H , to be given by

A/A0 =

(
R − H

4
+

h

2

)
(H − 2h)R−2,

where R is the inner radius of the undeformed tube, h the wall thickness. This relation
gives values for a compressed tube in the range 0 � A/A0 < 1. Differences between
A/A0 measurements in empty and fluid-filled tubes were minimal (of the order of
experimental resolution). The method of strained cross-sections was validated in an
empty tube by comparison with the tube law measurements shown in figure 5. The
value of the cross-sectional area at the point of opposite wall contact could be read
directly from the tube law to be (A/A0)owc = 0.178. To determine (A/A0)owc with
the method of strained cross-sections, lobes heights were measured from images of
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decreasing A/A0) prior to first opposite wall contact ((A/A0)owc =0.18).

the deformed tube that was collapsed mechanically to different levels beyond the
point of opposite wall contact. The value of the cross-sectional area at the point
of opposite wall contact was obtained by linear extrapolation of this data to the
lobe height measured at the point of opposite wall contact in the tube law to yield
(A/A0)owc = 0.173, confirming the accuracy of the method within 3 %.

3. Bubble pressure variation with A/A0

3.1. Critical threshold

3.1.1. A/A0 > (A/A0)owc

The variation of bubble pressure with Ca is shown in figure 6 for six values of
A/A0. These initial areas of the collapsed tube are in the range 0.18 � A/A0 � 0.41
and the steadily propagating bubble is either symmetric or asymmetric as discussed
(Heap & Juel 2008). Each point corresponds to a single experimental run, and all
the experiments were performed on the same section of tubing at four values of the
flow rate of Q =50, 400, 700, 1000 cm3 min−1. For each value of A/A0, the pressure
increases monotonically with Ca . The P–Ca curves are shifted downwards with
decreasing A/A0, indicating that more collapsed tubes enable the propagation of
lower pressure bubbles, which in turn reopen the tube partially to smaller heights.
These findings are consistent with the numerical predictions of Hazel & Heil (2003),
who found that it was easier to reopen a more collapsed tube because less work was
required to redistribute fluid in the tube, the smaller the cross-sectional area ahead
of the finger. As A/A0 → (A/A0)owc , the pressure curves tend towards a saturation
curve, which is reached for A/A0 = 0.26 to within experimental uncertainty. (This is
the largest value of A/A0 at which we observed asymmetric bubbles). This saturation
curve was characterized in further detail by gathering a more extensive set of data
for A/A0 = 0.26, which is shown in figure 7(a). Five experiments were performed
at each value of Q, and each individual result is included in the figure. Thus, we
have not included error bars on these measurements, but the modest scatter gives
a measure of the excellent reproducibility of the experiments with paraffin oil, with
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Figure 7. Variation of the bubble pressure with Ca: (a) A/A0 = 0.26. The insets are top-view
images of the bubble at Ca =0.1 (symmetric bubble) and Ca = 3.6 (asymmetric bubble).
(b) A/A0 = 0.13 and A/A0 = 0.05. The insets are top-view images of outlined bubble shapes at
Ca = 0.2 (asymmetric bubble), Ca = 2.3 (double-tipped bubble) and Ca = 3.2 (pointed bubble).
The reopening states are distinguished with different symbols.

average errors less than �P = 3 quoted in § 2.1.2. Note that the section of tube
used for these experiments was different from that of figure 6, and that as a result,
the minimum dimensionless pressure recorded at Q = 50 cm3 min−1 was reduced by
approximately 15 units. In figure 7(a), the pressure remains constant at P = −94 ± 2
for Ca � 0.8, and grows monotonically beyond this point. In the region of constant
pressure, top-view snapshots indicate the narrowing of the bubbles with increasing
Ca , so that a thicker liquid film is left behind on the tube walls after the passage of the
bubble tip, similarly to two-phase displacement flows in rigid capillary tubes (Taylor
1961; Bretherton 1961). However, the width of the bubble reaches an approximately
constant threshold for Ca > 0.8, which coincides with the onset of pressure increase
with Ca .
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The bubble pressure and capillary number are both influenced by the continuous
change in bubble shape from symmetric to strongly asymmetric (see § 4.1). Small
reductions in Ca are apparent in figure 6 in the data measured at Q =700 and
1000 cm3 min−1 when A/A0 decreases. These reflect the propagation of increasingly
asymmetric bubbles. While for symmetric bubbles, the dependence of Ca on Q is
simply linear, the rate of increase of Ca with Q slows as the tips of the asymmetric
bubbles increasingly deform. This is accompanied by an associated growth in bubble
pressure, which is consistent with the constant value of Q imposed in each experiment,
and translates to a small change in the overall form of the P–Ca curves in figure 6
as A/A0 → (A/A0)owc .

3.1.2. A/A0 � (A/A0)owc

In figure 7(b), P–Ca data are presented for A/A0 = 0.13 (black symbols) and
A/A0 = 0.05 (grey symbols), which were measured on the same section of tube as
the data in figure 7(a). As in figure 7(a), five experiments were performed at each
value of Q. We chose not to average the results as in Juel & Heap (2007), so
that qualitative differences could be identified between the different types of bubbles
that were occasionally found for the same value of Q. For these levels of initial
collapse, asymmetric, double-tipped and pointed bubbles were observed to propagate
steadily as Ca increased. An example of each type of bubble is inset into the figure.
The pressures of all three types of bubbles increase approximately linearly with Ca .
Double-tipped bubbles succeed asymmetric bubbles as Ca is increased, but both types
of bubbles exhibit the same pressure dependence on Ca , so that the transition between
these states cannot be detected from the pressure measurements alone. The pressure
of the pointed bubble, however, is systematically lower, but grows with Ca at the
same rate as that of the two other bubble types. Thus, it lies on a disconnected curve,
which is approximately parallel to the pressure curve that includes the asymmetric
and double-tipped data. Moreover, the maximum values of Ca for which asymmetric
and double-tipped bubbles were observed, both decrease when A/A0 is reduced as
seen in figure 7(b), and these transitions are discussed in § 4.

Occasionally, a double-tipped bubble would form initially, and then switch to an
asymmetric bubble during the course of a reopening experiment where the parameters
were held fixed. These observations are recorded with pentagrams in figures 7(b) and 1.
They form a region of bi-stability between the parameter regions where asymmetric
and double-tipped bubbles are selected. The switch was accompanied by a small drop
in pressure and tube inflation, and an associated rise in Ca (because each experiment
was conducted at constant flow rate). These took place typically over less than 20 %
of the experimental run time. Observations were also made of the occasional switch
from pointed to double-tipped bubbles within an experiment, marked with black
crosses in figure 1. This switch was accompanied by a rise in pressure and drop in
Ca , and the variation of these parameters was approximately five times larger than
that for the switch from double-tipped to asymmetric bubble (see § 3). These relatively
sudden but important changes in bubble properties suggest an exchange of stability
between different states (see § 4).

The results presented in this section establish (A/A0)owc as the threshold between
qualitatively different reopening regimes. The novel reopening behaviour for A/A0 <

(A/A0)owc is closely linked with the important changes in initial tube configuration
that occur at (A/A0)owc , where the opposite wall contact splits the collapsed tube into
two separate channels.
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Figure 8. Variation of �Ppointed with the level of collapse, A/A0, where �Ppointed is the
difference between the pressures of the slowest propagating pointed bubble and the fastest
double-tipped bubble. The inset shows the width of the region of opposite wall contact in an
empty tube as a function of A/A0.

3.2. Distinct reopening regimes

3.2.1. Pointed bubble versus asymmetric and double-tipped bubbles

The P–Ca saturation curve shown in figure 7(a) exhibits significant differences
from the data taken for A/A0 < (A/A0)owc on the same tube. The minimum bubble
pressure, measured for the lowest applied value of flow rate, Q = 50 cm3 min−1, is
approximately 25 % lower in figure 7(b) than for A/A0 = 0.26 in figure 7(a), and the
bubble pressure increases more rapidly with Ca . This reflects qualitative changes in
the work required to reopen the tube when A/A0 is reduced below the first point of
opposite wall contact. Whereas for A/A0 > (A/A0)owc , it becomes easier to reopen the
tube as A/A0 decreases as discussed in § 3.1.1, for A/A0 < (A/A0)owc , an increase of
the work required to reopen the tube is likely for small reductions in A/A0 because of
the increasing shear rates encountered in the thinning liquid films ahead of the bubble.
However, the pressures of asymmetric and double-tipped bubbles for A/A0 = 0.13 and
A/A0 = 0.05 collapse onto a single curve, and thus appear to be quasi-independent
of the level of collapse over this range of A/A0. This is because these two types of
bubbles initiate the reopening process in the lobes of the tube, so that the pressure is
determined by the shear rates in these regions. As the lobes do not alter significantly
between A/A0 = 0.13 and A/A0 = 0.05, the shear rates are not significantly modified,
so the pressure appears independent of A/A0.

By contrast, the pressure of the pointed bubble depends strongly on the level of
collapse. This is because this bubble infiltrates the central region of the cross-section
where opposite walls are only separated by thin lubrication films. The central region
grows considerably in the transverse direction as A/A0 is reduced as indicated by the
inset of figure 8. The difference in pressure between the slowest propagating pointed
bubble and the fastest double-tipped bubble, �Ppointed , shown in figure 8, exhibits a
similar variation with A/A0. �Ppointed is essentially a relative measure of the pressure
of the pointed bubble as the pressure of the double-tipped bubble does not vary
significantly with A/A0. Its correlation with the width of the thin-film region suggests
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Figure 9. Variation of the bubble pressure with Ca for A/A0 = 0.02. The reopening states
are distinguished by the use of different symbols. (Insets) Long asymmetric bubble (Ca =0.6),
long double-tipped bubble (Ca = 0.5) and the mixed double-tipped/pointed bubble (Ca =1.8).

that the pressure of the pointed bubble is set by the work required to peel apart
the opposite walls in this central region, which is also proportional to the width of
the thin-film region. Note that the collapsed region was easily measured in an empty
tube, whereas in the liquid-filled collapsed tube, it was difficult to delimit accurately
for technical reasons. However, the shapes of empty and liquid-filled collapsed cross-
sections differ only slightly because of the effect of gravity.

3.2.2. The limit of very strong collapse

Other novel types of bubbles were encountered in addition to the states reported
by Heap & Juel (2008) in the limit of very strong collapse, for A/A0 � 0.04 and
Ca � 1.0. A long narrow bubble propagated steadily through one side lobe, leaving
the remainder of the cross-section virtually unaffected by its passage. The tail end of
this long finger broadened to form either a long asymmetric or long double-tipped
bubble, as illustrated in figure 9 for A/A0 = 0.02, which was the strongest level of
collapse that could be reached experimentally. For A/A0 = 0.04 only long asymmetric
bubbles were observed in addition to the main bubble states, and they occurred
over a range of Ca where double-tipped bubbles were observed for larger values of
A/A0. The very strong initial collapse implies that the upper and lower boundaries
of the tube are in contact except within narrow side lobes (see figure 5). The large
(negative) initial transmural pressure is sufficient to ensure the isolation of these
lobes, so that the propagation of a narrow finger is promoted in either lobe, while
the opposite walls of the central part of the cross-section remain in contact. The
reopening of the tube only occurs when the precursor finger broadens into the main
bubble, in contrast with the double-tipped bubble where opposite wall contact is lost
at the tip of the bubble, and a liquid bridge is formed in the central part of the
cross-section, which separates the two fingers (Heap & Juel 2008). The length of the
precursor finger varied significantly between experiments, in the range 10 %–90 % of
the channel length for long asymmetric bubbles, and 5 %–40 % of the channel length
for long double-tipped bubbles, suggesting that the precursor finger is very sensitive
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Figure 10. Snapshots of steadily propagating bubbles at A/A0 = 0.26. Bubbles are asymmetric
about the vertical mid-plane for Ca > 0.1, and the tip asymmetry is measured by
β = S2/(S1 + S2) − 0.5, where S1 and S2 are the fractional surface areas of the tip shown
in the pictures.

to background fluctuations. The average finger length is reduced with increasing Ca
as increasing viscous forces are able to counteract the strong elastic forces, and reopen
the tube over shorter distances.

The pressure data measured for A/A0 = 0.02 can be seen in figure 9 to be
qualitatively similar to that shown in figure 7(b) for A/A0 = 0.13 and A/A0 = 0.05.
At least five experiments were performed for each value of Q, and all the results
are shown on the graph. Note that even in this limit of almost complete collapse, a
pressure step remains between the double-tipped and pointed bubbles, which is five
times larger than the average error on the pressure of �P =3 (see figure 8). The long
fingers are associated with scatter in the pressure data, which is slightly larger than
the average error on the pressure. This is attributed to the considerable variation in
the length of their precursor finger.

4. Transition between states
4.1. Symmetric to asymmetric bubbles

For (A/A0)owc <A/A0 � 0.26, symmetric bubbles were only found at low values of Ca ,
and the reflection symmetry of the bubble about the vertical mid-plane was broken
as Ca was increased, as illustrated in figure 10. In the set of experiments shown
in figure 10, a symmetric bubble was only observed for Ca = 0.1, the lowest value
investigated. In order to quantify the asymmetry, the aerial image of the bubble tip
was separated into two regions by an axial line originating at the most advanced point
on the bubble. The bubble tip was delimited by a transverse line located 11.2 mm
behind the apex of the bubble, which was positioned so that it included the entire
tip for all the values of Ca investigated. As shown in figure 10, S2 (S1) is the area
of the tip-region that grows (shrinks) with increasing asymmetry. The measure of the
asymmetry, β , was defined as 0 � β = S2/(S1 + S2) − 0.5 < 0.5, where the subtracted
value of 0.5 corresponds to the normalized value of S2 for a symmetric bubble.
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Figure 11. Variation of the tip asymmetry, β , with Ca , from experiments performed at
A/A0 = 0.26. The solid line is a fit of the form β = M(Ca − Cac(asym))

1/2, with M = 0.11 and
Cac(asym) = 0.25, the critical value for the onset of asymmetric bubbles. The average error

between the measured and the fitted values of β is 1.5 × 10−2.

The variation of β with Ca in figure 11 shows the continuous growth of the
asymmetry. The values shown are all positive, as the air bubbles in this series of
experiments all propagated with a right-hand side bias, corresponding to the migration
of the bubble tip into the upper part of the snapshot in figure 10(b). A least-square fit
of the form β2 = M2(Ca − Cac(asym)), where Cac(asym) is the critical capillary number
beyond which asymmetric bubbles arise, gives M = 0.11 and Cac(asym) = 0.25, with an
average error on β2 of 4.0 × 10−3. The approximate square-root dependence of the
asymmetry on Ca suggests that the symmetric bubble loses stability to the asymmetric
one through a supercritical pitchfork bifurcation (i.e. the simplest type of symmetry-
breaking bifurcation). Although only the upper branch of the pitchfork was obtained
at A/A0 = 0.26, both right- and left-hand sides propagating bubbles were found for
other levels of collapse (see figure 12), suggesting the existence of a lower branch of
the pitchfork, which would be disconnected due to imperfections.

The bubble asymmetry is closely associated with the non-uniform shapes of the
collapsed cross-sections, which are illustrated in figure 5 for decreasing values of A/A0.
The shear stresses in the lobes are smaller than those in the more collapsed central
part of the cross-section, and thus the bubble tip deforms to promote propagation
in either of the two lobes. This mechanism has been verified in rigid tubes with a
partially occluded cross-section that is symmetric about the vertical mid-plane, and
similar asymmetric bubbles are observed for increasing Ca (de Lózar et al. 2009).

4.2. Asymmetric to double-tipped bubbles

In figure 12, a series of top-view snapshots of the propagating bubble for
0.2 � Ca � 1.0 illustrates the evolution of the asymmetric bubble and the transition
to double-tipped bubbles at A/A0 = 0.13. Five experiments were performed at each
flow rate and the pictures in figure 12 were selected to show that the bubble could
propagate down either of the side lobes. Note that the asymmetry of the tip is more
pronounced than that for A/A0 = 0.26 as shown in figure 10. As Ca increases, the
asymmetric tip shortens, as highlighted with solid lines in figures 12(a) and 12(d ), and
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Figure 12. Series of top-view snapshots of reopening bubbles at A/A0 = 0.13 for 0.2 �
Ca � 1.0. The tip of the asymmetric bubble (demarcated by vertical lines in (a) and (d ))
shortens with increasing Ca , and a sudden transition to double-tipped bubbles is observed at
Ca = 1.0.

its central part develops a shallow indentation at Ca = 0.6. Note that this indentation
does not bear any relation to tip splitting in viscous fingering (Tabeling, Zocchi
& Libchaber 1987), as it does not evolve during the propagation of the bubble.
Moreover, it grows only slightly up to Ca = 0.9, beyond which the double-tipped
bubble is formed, which comprises two fingers separated by a narrow liquid bridge
that merge into the main bubble at a distance Lp behind the tips (Heap & Juel 2008).
The dramatic change in bubble shape between figures 12(e) (Ca = 0.9) and 12(f )
(Ca = 1.0) suggests a discontinuous transition between the asymmetric and double-
tipped reopening states, which is documented in detail below. This interpretation is
further supported by the existence of mixed states near the transition, as mentioned in
§ 3.1.2, where double-tipped bubbles suddenly switched to asymmetric bubbles during
the course of an experiment at fixed values of A/A0 and of the imposed flow rate Q.

The radical change in bubble shape at the transition between asymmetric and
double-tipped bubbles was all the more unexpected, given that the transition could
not be identified from the pressure data shown in figure 7. The side-view snapshots
in figure 13 show an asymmetric bubble (Ca =0.9) and a double-tipped bubble
(Ca = 1.0) that were both obtained at Q =300 cm3 min−1. The length of the reopening
region and the height of the reopened tube are similar in both cases to within
experimental error, confirming the similarities of these two reopening processes. The
free surface of the propagating bubble tip, however, increases dramatically with the
onset of the double-tipped bubble. Thus, double-tipped bubbles may arise at larger
values of Ca than required for asymmetric bubbles, because of the reduced influence
of surface tension forces. However, stable double-tipped bubbles have also been
found numerically by Heil (1999) at Ca =0, but his three-dimensional model imposed
a reflection symmetry about the vertical mid-plane.

The length of the fingers of the double-tipped bubble Lp defined schematically in
figure 13(b) and measured in units of the inner diameter of the tube (2R) is plotted
against Ca in figure 14. The experiments reported in figure 14(a) for A/A0 = 0.05
focus on the lower range of Ca close to the transition to asymmetric bubbles, where
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(a) (b)

Lp

Figure 13. Top and side views from two experiments performed at Q = 300 cm3 min−1 with
A/A0 = 0.13: (a) asymmetric bubble (Ca = 0.9), (b) double-tipped bubble (Ca = 1.0). Note that
the small differences in reopening heights and Ca are within the experimental variability.

Lp rises steeply to up to more than 30 tube diameters as Ca is reduced. Even longer
precursor fingers extending up to the entire length of the tube were occasionally found,
although Lp could not be measured in these cases for technical reasons. These findings
suggest that Lp tends to infinity as Ca is reduced towards a critical threshold, Cac(dt).
An estimate of Cac(dt) was obtained by fitting the data to the simplest function
that asymptotes Cac(dt), of the form Ca − Cac(dt) =N(Lp/2R)−1. We find N = 0.33
and Cac(dt) = 0.53, but it yields a relatively large average error on Ca of 0.13. The
diverging length of the liquid bridge joining the two precursor fingers is reminiscent of
the diverging menisci that are shown to form in the corners of polygonal tubes in the
absence of gravity by Concus & Finn (1974), when the contact angle of the liquid and
the polygonal geometry are chosen so that a continuous equilibrium contact line does
not exist. The comparison between values of Lp at A/A0 = 0.13 and 0.05 in figure 14(b)
suggests that the value of Cac(dt) increases with A/A0. It also points to a similar
increase in the critical value of Ca beyond which pointed bubbles are found, so that
the range over which double-tipped bubbles are observed does not vary significantly.

A comparison between the side views of tubes reopening with double-tipped bubbles
at Ca = 1.0 and Ca = 2.7, respectively, is shown in figure 15 for A/A0 = 0.13. As
Ca increases, increasing heights of reopening coupled to a reopening region of
approximately constant length, leads to the steepening of tube profile in the reopening
region. The vertical line (i) indicates the location of the leading precursor finger tip,
whereas the lines (ii) indicate the points of merging of the precursor fingers. The height
of the reopened tube is compared with the height at which the precursor fingers of
the double-tipped bubble merge in figure 16. At Ca = 1.0 the precursor fingers are
considerably longer compared with Ca =2.7, but the height of the tube at the point
of merging is approximately the same. In fact, the height of reopening at the point of
merging of the fingers (in units of inner tube diameter, 2R) is approximately constant
and equal to hc(A/A0 = 0.13) = 0.59 ± 0.03 and hc(A/A0 = 0.05) = 0.53 ± 0.02 for A/A0 = 0.13
and 0.05, respectively. The error quoted corresponds to the standard deviation of the
data. Double-tipped bubbles disappear when the tube reopens to a height less than
or equal to the height at which the fingers would merge. The value hc is expected to
depend on the elastic properties of the tube as well as the level of collapse.

4.3. Double-tipped to pointed bubbles

As Ca increases, the length of the precursor fingers of the double-tipped bubbles
decreases until it reaches a minimum value of approximately Lp(min) ∼ hc at a critical
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Figure 14. Variation of the length of the fingers in the double-tipped bubble with Ca:
(a) A/A0 = 0.05, for values of Ca close to the threshold below which asymmetric bubbles are
observed. The solid line is a hyperbolic fit plotted to highlight the divergence of the data at a
finite value of Ca . It is given by Ca − Cac(dt) = N (Lp/2R)−1 with N = 0.33 and Cac(dt) = 0.53,
the critical value for the onset of double-tipped bubble. It is associated with an average error
on Ca of 0.13. (b) A/A0 = 0.13 and 0.05, over the entire range of Ca where double-tipped
bubbles are observed. The vertical line for A/A0 = 0.13 marks the minimum value of Ca for
which double-tipped bubbles were observed. The transition to pointed bubbles occurs when
Lp � 0.5, i.e. less than one tube radius (see § 4.3).

value of the capillary number Cac(p) (see figure 14). For Ca >Cac(p), pointed bubbles
are selected instead of the double-tipped bubble. An interpretation of this observation
is that precursor fingers cannot be supported when the reopening region becomes
excessively steep. The replacement of the double-tipped bubble by a pointed bubble
is associated with a discontinuous reduction of the bubble pressure as shown in
figure 7. This pressure reduction is coupled to an increase of the bubble speed,
because experiments were performed at constant flow rate.

In figure 17, a comparison between double-tipped and pointed bubbles obtained
for the same value of the flow rate Q =1300 cm3 min−1 at A/A0 = 0.13 highlights
important differences in the respective reopening processes. Whereas the central
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Figure 15. Side view of the transition region in tubes reopening with double-tipped bubbles
for A/A0 = 0.13: (a) Ca = 1.0, (b) Ca = 2.7. The vertical line (i) indicates the location of the
leading finger tip, and the lines (ii) indicate the point of merging of the tips into the main
reopening bubble.
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Figure 16. Variation of the height of the reopened tube (in units of inner tube diameter,
2R) with Ca: (a) A/A0 = 0.13, (b) A/A0 = 0.05. The symbols represent symmetric (�), mixed
double-tipped to asymmetric (pentagram), double-tipped (�) and pointed (�) bubbles. The
height of the tube at the axial location where the precursor fingers of the double-tipped bubble
merge is shown with stars (∗). This height is approximately constant with Ca and its mean
value and standard deviations are shown with solid and dotted horizontal lines respectively.
The double-tipped finger is unstable when the tube reopens to a height less or equal to the
height at which the fingers would merge.
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(b)

(a)
(i) (ii)

Figure 17. Comparison between double-tipped (Ca = 3.0) and pointed bubbles (Ca = 3.3)
near transition for A/A0 = 0.13. Both bubbles were obtained in experiments at
Q = 1300 cm3 min−1. The vertical line (i) in the snapshots indicates the point beyond which the
tube remains collapsed. The cusp-shaped protrusion of the pointed finger extends to this point
(i), while the tips of the double-tipped bubble are less advanced at location (ii), suggesting
important differences in the flows ahead of the bubble tips. Note the larger height of reopening
in (a) compared to (b), which is consistent with the larger double-tipped bubble pressures
shown in figure 7.

protrusion on the pointed bubble extends into the collapsed region, the tips of the
precursor fingers in the double-tipped bubble are set back as shown by the vertical
line (ii). This is a further indication that they propagate by redistributing the fluid
ahead of them, while the pointed finger overcomes large shear forces by infiltrating
the most collapsed region. The pointed bubbles observed by Petitjeans & Maxworthy
(1996) in miscible displacement flows with small bubble velocities are associated with
the presence of recirculations ahead of the bubble that draw out fluid in the centre
of the tube. We could not ascertain whether flows recirculations were responsible for
focusing the interfacial flow into a pointed bubble, as we were unable to visualize the
flow directly. However, whereas asymmetric and double-tipped bubbles can form in
rigid tubes with non-uniform cross-sectional shapes (Heil 1999; de Lózar et al. 2009),
the infiltration of the pointed bubble tip into the most collapsed region where shear
forces are largest is unlikely in rigid tubes. Thus, we speculate that the formation of
pointed bubbles is inherently linked to the reopening process.

5. Conclusion
We have presented the results of an investigation into the selection of reopening

bubbles, which propagate into a strongly collapsed benchtop model of airway
reopening. A recent review of the modelling of airway collapse (Heil et al. 2008)
suggests that extensive collapse featuring opposite wall contact may be widespread in
the lungs, particularly in the peripheral airways. The non-dimensional surface tension
of these vessels is quoted to be σ = 50 (Hazel & Heil 2003), which is more than two
orders of magnitude larger than in the case of our relatively stiff experimental tube.
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Yet, the robustness of the peeling solution simulated for moderate initial collapse
over this wide range of σ suggests that our findings may be relevant to pulmonary
reopening processes.

We find that the level of collapse at which opposite wall contact first occurs within
the tube cross-section is a critical threshold beyond which the reopening mechanics
change qualitatively. For dimensionless cross-sections A/A0 � (A/A0)owc = 0.18, the
canonical parabolic-tipped peeling bubble is replaced by ‘asymmetric’ and ‘double-
tipped’, whose pressure is set in the lobes of the collapsed tube, while the pressure
of ‘pointed’ bubbles is proportional to the width of the central thin-film region. For
near-complete collapse, A/A0 � 0.04, two further types of bubbles are observed: ‘long
asymmetric’ and ‘long double-tipped’, which are both defined by the long precursor
finger that propagate within one of the lobes without affecting the opposite wall
contact of the cross-section.

The supercritical breaking of the bubble symmetry about the vertical mid-plane
is observed for collapsed cross-sectional areas as large as A/A0 = 0.26, at which
the opposite walls of the collapsed cross-section are not in contact. The resulting
asymmetric bubbles may impact the dynamics at airway bifurcations, leading to the
preferential reopening of one daughter vessel over the others. Double-tipped bubbles
are formed instead of asymmetric ones when the tube reopens to a height at least
equal to the height at which precursor fingers merge into the main bubble. In turn, the
double-tipped bubble disappears beyond a critical steepness of the reopening region.
It is replaced by the pointed bubble, which is a faster bubble of significantly lower
pressure. This pointed bubble may be relevant physiologically, as closed airways must
be reopened quickly without damaging the fragile tissues that line them (Ghadiali &
Gaver 2008).
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